1 Find the value of a, the value of b and the value of c so that this identity is true for all values of x and y.

$$
3 x+a y+7+b x+a \equiv x+7 y+c
$$

$$
\begin{aligned}
& a=. ~ \\
& b=~ . ~
\end{aligned}
$$

2 (a) Find the coordinates of the midpoint of the line joining the points $(5,2)$ and $(-3,7)$.
(a)
[2]
(b) (i) For $d=6 t^{2}+4$, find the value of d when $t=-3$.
(b)(i)
(ii) Rearrange this formula to make t the subject.

$$
d=6 t^{2}+4
$$

(c) Write a number in each box so that the following is an identity.

$$
\begin{equation*}
4 x-3+6(x-5) \equiv 7 x-1+\square x-\square \tag{2}
\end{equation*}
$$

(d) You are given that $\mathrm{f}(x)=5-2 x$.
(i) Find x when $\mathrm{f}(x)=0$.
\qquad
(d)(i)
(ii) Find $\mathrm{f}(t+4)$.

Express your answer in the form $a+b t$.

3 Maja and Charlie are playing a 'think of a number' game.
(a) Maja says:

I think of a number.
I add 4.
I multiply the result by 6 .
The answer is 72.
Find the number that Maja thought of.
(a)
(b) Charlie says:

I think of a number.
I multiply it by 6 .
I add 4 to the result.
The answer is 39 more than the number I first thought of.
(i) Let n be the number that Charlie first thought of.

Complete this equation for Charlie's number game.
\qquad $=n+39$
(ii) Solve the equation to find the number that Charlie first thought of.

4 (a You are given this identity

$$
5 x+3(2 x-7) \equiv a x+b
$$

where a and b are integers.
Find the values of a and b.
(a) $a=$

$$
b=
$$

(b) You are given this equation

$$
5 x+3(2 x-7)=c x+d
$$

where c and d are integers.
You are given also that this equation has solution $x=4$ and is not an identity.
Find a possible pair of values of c and d.
(b) $c=$

$$
d=
$$

5 Decide whether each of the following is an equation, a formula, an identity or an expression. For each one, put a tick (\mathcal{J}) in the correct column.

	Equation	Identity	Formula	Expression
$V=\frac{1}{3} \pi r^{2} h$				
$3 n+5+5 n-7 \equiv 8 n-2$				
$6 n-4=2 n$				
πr^{2}				
$7 t^{2}-t+11$				

6 At a fish and chip shop, a fish costs $£ 3.32$ and a portion of chips costs $£ 1.24$.
(a) Sameira buys x fish and 6 portions of chips. She pays $£ 34$.

Use this information to write down an equation in x and solve it to find how many fish Sameira buys.
(a)
[4]
(b) When Sameira goes to the fish and chip shop the following week, all prices have been increased by 12%.

How much will she have to pay in total if she buys one fish and one portion of chips?
(b) £

7 Solve.
(a) $10 x-7=2 x+3$
(a)
[3]
(b) $7(5-2 x)=0$
(b)

8 (a Solve.
(i) $3 x+7=15-2 x$
(a)(i)
(ii) $\frac{8}{x}=2$
(ii)
(iii) $3 x^{2}=75$
(b) Expand.

$$
4 x(2 x-7)
$$

> (b)
(c) Factorise.

$$
6+8 x
$$

(c)
(d) Make x the subject of the following.

$$
x+3=2 a+b x
$$

(d)

